4,286 research outputs found

    Accurate Damping Factor and Frequency Estimation for Damped Real-Valued Sinusoidal Signals

    Get PDF
    The interpolated discrete Fourier transform (IpDFT) is one of the most popular techniques to estimate the parameters of a damped real-valued sinusoidal signal (DRSS). However, its accuracy is affected by strong noise presence and short observation windows. To this end, this letter proposes a novel two-point IpDFT method, called I2pZDFT, for the parameter estimation of a DRSS. The proposed I2pZDFT uses the zero-padding technique to increase the sampling rate in the frequency domain. The conjugate symmetry and the parity of the zero-padded signal are utilized to eliminate the influence of the spectral leakage. Simulation results highlight that the proposed I2pZDFT outperforms the existing IpDFT-based methods in terms of noise immunity, especially in the case of observation windows as short as 0.5-1 cycles

    Convergence analysis of distributed fixed-step power control algorithm for cellular mobile systems

    Get PDF
    [[abstract]]Power control plays a vital role in the operation of cellular systems. It has been shown that a power control mechanism with distributed fixed-step control algorithm using a single bit can maintain the received carrier-to-interference ratio (CIR) within a desired range in long-term fading channels. However, as far as the short-term fading is concerned, whether such a power control algorithm remains convergent is not clear. In this work, a simple received CIR model is adopted to derive the condition that ensures system stability for short-term fading channels. The bounds of the received CIR are also obtained. Furthermore, the effects of the power control step size and the time required for convergence are also analyzed. Copyright (C) 2007 John Wiley & Sons, Ltd

    Generating MHV super-vertices in light-cone gauge

    Full text link
    We constructe the N=1\mathcal{N}=1 SYM lagrangian in light-cone gauge using chiral superfields instead of the standard vector superfield approach and derive the MHV lagrangian. The canonical transformations of the gauge field and gaugino fields are summarised by the transformation condition of chiral superfields. We show that N=1\mathcal{N}=1 MHV super-vertices can be described by a formula similar to that of the N=4\mathcal{N}=4 MHV super-amplitude. In the discussions we briefly remark on how to derive Nair's formula for N=4\mathcal{N}=4 SYM theory directly from light-cone lagrangian.Comment: 25 pages, 7 figures, JHEP3 style; v2: references added, some typos corrected; Clarification on the condition used to remove one Grassmann variabl

    Effect of area ratio of the primary nozzle on steam ejector performance considering nonequilibrium condensations

    Get PDF
    This is the final version. Available on open access from Elsevier via the DOI in this recordThe formation and evaporation of nanodroplets in steam ejectors is neglected in many numerical simulations. We analyse the influence of a primary nozzle on steam ejector performances considering phase change processes. The numerical model is validated in detail against experimental data of supersonic nozzles and steam ejectors available in the literature. The results show that the first nonequilibrium condensation is observed within the primary nozzle, while under-expanded supersonic flow causes a second nucleation-condensation process to achieve a large liquid fraction of 0.26 in the steam ejector. The compression process of the supersonic flow results in a steep decrease of the degree of subcooling leading to droplet evaporations. The condensation and evaporation processes repeat alternatively depending on the flow behaviour in the mixing section. The increasing area ratio leads to the transition of the flow structure from under-expanded flows to over-expanded flows in the mixing section. The droplet diameter is about 7 nm in the constant section and the entrainment ratio can reach approximately 0.75 for an area ratio of 8, which achieves a good performance of the steam ejector.European Union Horizon 2020Independent Research Fund DenmarkInnovation Fund of DenmarkMAN Energy SolutionsNational Natural Science Foundation of Chin

    Innate immune responses and antioxidant/oxidant imbalance are major determinants of human Chagas disease.

    Get PDF
    We investigated the pathological and diagnostic role of selected markers of inflammation, oxidant/antioxidant status, and cellular injury in human Chagas disease. METHODS: Seropositive/chagasic subjects characterized as clinically-symptomatic or clinically-asymptomatic (n = 116), seronegative/cardiac subjects (n = 102), and seronegative/healthy subjects (n = 45) were analyzed for peripheral blood biomarkers. RESULTS: Seropositive/chagasic subjects exhibited an increase in sera or plasma levels of myeloperoxidase (MPO, 2.8-fold), advanced oxidation protein products (AOPP, 56%), nitrite (5.7-fold), lipid peroxides (LPO, 12-17-fold) and malondialdehyde (MDA, 4-6-fold); and a decline in superoxide dismutase (SOD, 52%) and glutathione (GSH, 75%) contents. Correlation analysis identified a significant (p0.95). The MPO (r = 0.664) and LPO (r = 0.841) levels were also correlated with clinical disease state in chagasic subjects (p<0.001). Seronegative/cardiac subjects exhibited up to 77% decline in SOD, 3-5-fold increase in LPO and glutamate pyruvate transaminase (GPT) levels, and statistically insignificant change in MPO, AOPP, MDA, GPX, GSH, and creatine kinase (CK) levels. CONCLUSIONS: The interlinked effects of innate immune responses and antioxidant/oxidant imbalance are major determinants of human Chagas disease. The MPO, LPO and nitrite are excellent biomarkers for diagnosing seropositive/chagasic subjects, and MPO and LPO levels have potential utility in identifying clinical severity of Chagas diseaseFil: Dhiman, Monisha. University Of Texas Medical Branch. Department Of Microbiology & Immunology And Pathology; United State of America;Fil: Coronado, Yun A.. University Of Texas Medical Branch. Department Of Microbiology & Immunology And Pathology; United State of America;Fil: Vallejo, Cecilia K.. University Of Texas Medical Branch. Department Of Microbiology & Immunology And Pathology; United State of America;Fil: Petersen, John R.. University of Texas Medical Branch. Department of Pathology; United States of America;Fil: Ejilemele, Adetoum. University of Texas Medical Branch. Department of Pathology; United States of America;Fil: Nuñez, Sonia. Hospital Público de Gestión Descentralizada San Bernardo (HPGDSA); Argentina;Fil: Zago, María Paola. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico - CONICET - Salta. Instituto de Patologia Experimental; Argentina;Fil: Spratt, Heidi. Departments of Biochemistry and Molecular Biology and Preventive Medicine and Community Health. University of Texas Medical Branch; United States of America;Fil: Garg, Nisha Jain. University of Texas Medical Branch. Department of Pathology; United States of America

    The S Matrix of 6D Super Yang-Mills and Maximal Supergravity from Rational Maps

    Get PDF
    We present new formulas for nn-particle tree-level scattering amplitudes of six-dimensional N=(1,1)\mathcal{N}=(1,1) super Yang-Mills (SYM) and N=(2,2)\mathcal{N}=(2,2) supergravity (SUGRA). They are written as integrals over the moduli space of certain rational maps localized on the (n3)!(n-3)! solutions of the scattering equations. Due to the properties of spinor-helicity variables in six dimensions, the even-nn and odd-nn formulas are quite different and have to be treated separately. We first propose a manifestly supersymmetric expression for the even-nn amplitudes of N=(1,1)\mathcal{N}=(1,1) SYM theory and perform various consistency checks. By considering soft-gluon limits of the even-nn amplitudes, we deduce the form of the rational maps and the integrand for nn odd. The odd-nn formulas obtained in this way have a new redundancy that is intertwined with the usual SL(2,C)\text{SL}(2, \mathbb{C}) invariance on the Riemann sphere. We also propose an alternative form of the formulas, analogous to the Witten-RSV formulation, and explore its relationship with the symplectic (or Lagrangian) Grassmannian. Since the amplitudes are formulated in a way that manifests double-copy properties, formulas for the six-dimensional N=(2,2)\mathcal{N}=(2,2) SUGRA amplitudes follow. These six-dimensional results allow us to deduce new formulas for five-dimensional SYM and SUGRA amplitudes, as well as massive amplitudes of four-dimensional N=4\mathcal{N}=4 SYM on the Coulomb branch.Comment: 71+23 pages. v2: minor corrections, references added, matches published JHEP versio

    Non-Equilibrium Edge Channel Spectroscopy in the Integer Quantum Hall Regime

    Full text link
    Heat transport has large potentialities to unveil new physics in mesoscopic systems. A striking illustration is the integer quantum Hall regime, where the robustness of Hall currents limits information accessible from charge transport. Consequently, the gapless edge excitations are incompletely understood. The effective edge states theory describes them as prototypal one-dimensional chiral fermions - a simple picture that explains a large body of observations and calls for quantum information experiments with quantum point contacts in the role of beam splitters. However, it is in ostensible disagreement with the prevailing theoretical framework that predicts, in most situations, additional gapless edge modes. Here, we present a setup which gives access to the energy distribution, and consequently to the energy current, in an edge channel brought out-of-equilibrium. This provides a stringent test of whether the additional states capture part of the injected energy. Our results show it is not the case and thereby demonstrate regarding energy transport, the quantum optics analogy of quantum point contacts and beam splitters. Beyond the quantum Hall regime, this novel spectroscopy technique opens a new window for heat transport and out-of-equilibrium experiments.Comment: 13 pages including supplementary information, Nature Physics in prin

    A Robust Peak-to-Average Power Ratio Reduction Scheme by Inserting Dummy Signals with Enhanced Partial Transmit Sequence in OFDM Systems.

    Get PDF
    Peak-to-average power ratio (PAPR) is one of the main drawbacks in orthogonal frequency division multiplexing (OFDM) systems. High PAPR forces the power amplifier to back off in order to operate in its linear region, which degrades the power efficiency of the system. Several PAPR reduction techniques have been developed, but most of them have not considered both complexity and PAPR reduction. In this paper, a novel PAPR reduction scheme based on the insertion of dummy sequences to an enhanced partial transmit sequence is proposed. By applying this scheme the PAPR performance is enhanced compared to the conventional methods while the complexity is significantly reduced. Numerical analysis is carried out with OFDM signal and QPSK modulation
    corecore